The Relative Risks of School Travel A National Perspective and Guidance for Local Community Risk Assessment

Ann M. Dellinger
Committee on School Transportation Safety
Special Report 269
TRB, 2002

Slides developed by:
Paul S. Fischbeck
Doug Robertson
Beverly Huey

Committee

H. Douglas Robertson, Chair, Highway Safety Research Center, University of North Carolina, Chapel Hill

Phyllis Agran, University of California, Irvine

Richard D. Blomberg, Dunlap and Associates, Stamford, Connecticut

- Ann M. Dellinger, Centers for Disease Control and Prevention, Atlanta, Georgia
- Rodney G. Dobey, St. Cloud State University, St. Cloud, Minnesota
- Ned B. Einstein, Transportation Alternatives, New York City
- John S. Fabian, New York State Public Transportation Safety Board, Schenectady, New York
- James C. Fell, Pacific Institute for Research and Evaluation, Calverton, Maryland
- Ted Finlayson-Schueler, Pupil Transportation Safety Institute, Syracuse, New York
- Paul S. Fischbeck, Associate Professor, Carnegie Mellon University
- Lindsay I. Griffin, III, Texas Transportation Institute, College Station, Texas
- Ronald J. Hundenski, San Francisco Municipal Railway, San Francisco, California
- Ronald L. Kinney, Laidlaw Education Services, Sacramento, California
- Jeffrey C. Tsai, Pupil Transportation Group, North Carolina State University, Raleigh

Committee's Charge

- Review available data
- Consider the basic characteristics of typical modes used by students
- Assess issues relevant to determining risk associated with each mode

Committee's Charge (continued)

- Assess the efficacy of drawing conclusions from the available data
- Evaluate the availability and adequacy of the salient data

The Problem

- School-aged children in MV crashes during normal school travel hours
- 800 killed/year
- 152,000 injured/year
- Relative risks of various modes not well understood
- How do local decision makers balance travel safety with environmental and resource constraints?

Fundamental Approach

- Risk Management Framework
- Considers school transportation as a whole
- If you modify one area (e.g., less bus travel) you affect other areas

Travel Modes

- School bus
- Other bus (transit)
- Passenger vehicle (driver 19 and older)
- Passenger vehicle (driver 18 and younger)
- Bicycle
- Walking

Typical "School Travel Times"

- Purpose of trip not available
- School days
- Weekdays
- September 1 through 15 June
- Time of day
- Morning: 6-9 am
- Afternoon: 2-5 pm

Distribution of Travel Modes by Age

Exposure and Outcome Comparison

Injury and Fatality Rates

	Injuries		Fatalities	
	Per 100 Million Student Trips	Per 100 Million Student- Miles	Per 100 Million Student Trips	Per 100 Million Student- Miles
	100	20	0.3	0.1
Mode	120	20	0.1	<0.1
School Bus	490	90	1.6	0.3
Other Bus	2,300	430	13.2	2.4
Passenger Vehicle, Adult Driver	1,610	2,050	9.6	12.2
Passenger Vehicle, Teen Driver	310	590	4.6	8.7
Bicycle	$\mathbf{6 5 0}$	$\mathbf{1 3 0}$	$\mathbf{3 . 5}$	$\mathbf{0 . 7}$
Walking				
Overall Rate				

Points

- Buses are very safe
- "Per trip" and "per mile" measures are different
- Teen drivers and bicycles have high rates

Scenarios

- Hypothetical examples of how national risk estimates could inform decisions
- Changing school bus pick-up distance for an elementary school
- Increasing parking for student drivers at a high school

Suburban Elementary School

- 250 children
- 180 days/year
- All live within 10 miles of school
- No transit bus service available

Miles from School	Number of Children
Less than 1	48
Between 1-1.5	24
Between 1.5-2	19
Between 2-3	38
Between 3-4	32
Between 4-5	27
Between 5-6	22
Between 6-7	18
Between 7-8	13
Between 8-9	7
Between 9-10	2
Total	250

Distribution of Travel Modes under Different Minimum Walking Distances

A change in one mode will affect the others

One-mile pick-up distance						Two-mile pick-up distance				
Miles from School	Walk	Bike	School Bus	Adult Driver	Student Driver	Walk	Bike	School Bus	Adult Driver	Student Driver
Less than 1	60\%	30\%	-	10\%	-	60\%	30\%	-	10\%	-
Between 1-1.5	30\%	20\%	35\%	15\%	-	50\%	35\%	-	15\%	-
Between 1.5-2	8\%	8\%	49\%	35\%	1\%	36\%	26\%	-	37\%	1\%
Between 2-3	3\%	8\%	49\%	40\%	1\%	3\%	8\%	49\%	40\%	1\%
Between 3-4	-	-	54\%	45\%	1\%	-	-	54\%	45\%	1\%
Between 4-5	-	-	59\%	40\%	1\%	-	-	59\%	40\%	1\%
Between 5-6	-	-	59\%	40\%	1\%	-	-	59\%	40\%	1\%
Between 6-7	-	-	59\%	40\%	1\%	-	-	59\%	40\%	1\%
Between 7-8	-	-	59\%	40\%	1\%	-	-	59\%	40\%	1\%
Between 8-9	-	-	59\%	40\%	1\%	-	-	59\%	40\%	1\%
Between 9-10	-	-	59\%	40\%	1\%	-	-	59\%	40\%	1\%

Impact of Different Distances

Adding More Student Parking

300 Student Parking Spaces								
	$14-15$ years olds				$16-18$ years old			
	$\begin{array}{l\|} \hline \% \text { per } \\ \text { mode } \end{array}$	$\begin{gathered} \text { \# of } \\ \text { Students } \end{gathered}$	Injuries per Year	Fatalities per Year	$\begin{gathered} \% \text { per } \\ \text { mode } \end{gathered}$	\# of Students	Injuries per Year	Fatalities per Year
School Bus	35\%	420	0.21	0.0004	25\%	300	0.45	0.0002
Other Bus	10\%	120	0.02	0.0000	5\%	60	0.03	0.0000
PV (driver 19 and older)	20\%	240	0.45	0.0011	25\%	300	0.99	0.0048
Walking	15\%	180	0.18	0.0023	12\%	144	0.18	0.0019
Bicycling	5\%	60	0.28	0.0010	3\%	36	1.00	0.0032
PV (driver 18 and under)	15\%	180	2.76	0.0184	30\%	360	1.38	0.0152
Total by age group	100\%	1,200	3.90	0.023	100\%	1,200	4.02	0.025
Years between events			0.3	43.1			0.2	39.4
					Scho	ool totals	7.92	0.05
		Years between events for school					0.13	20.56

Base
Case

Adding More Student Parking

600 Student Parking Spaces									With New Parking
	14.15 years olds				$16-18$ years old				
	$\begin{array}{\|c\|} \hline \% \text { per } \\ \text { mode } \end{array}$	$\begin{array}{\|c\|} \text { \# of } \\ \text { Students } \end{array}$	Injuries per Year	Fatalities per Year	$\left\|\begin{array}{c} \% \text { per } \\ \text { mode } \end{array}\right\|$	$\begin{array}{\|c\|} \hline \text { \# of } \\ \text { Students } \end{array}$	Injuries per Year	Fatalities per Year	
School Bus	25\%	300	0.15	0.0003	15\%	180	0.32	0.0001	
Other Bus	5\%	60	0.01	0.0000	5\%	60	0.01	0.0000	
PV (driver 19 and older)	20\%	240	0.45	0.0011	20\%	240	1.24	0.0038	
Walking	12\%	144	0.14	0.0019	7\%	84	0.14	0.0011	
Bicycling	3\%	36	0.17	0.0006	3\%	36	0.60	0.0032	
PV (driver 18 and under)	35\%	420	6.43	0.0428	50\%	600	2.76	0.0254	
Total by age group	100\%	1,200	7.36	0.047	100\%	1,200	5.07	0.034	
Years between events			0.1	21.4			0.2	29.7	
					Scho	ool totals	12.43	0.08	
		Years between events for school					0.08	12.43	

Adding More Student Parking

Net
Impact

Net effect of new policy		
	Injuries per Year	Fatalities per Year
\% change in risk	57\%	65\%

Is the Additional Risk Acceptable?

- Local school decision
- How would the savings of reduced bus service be used?
- For this school, is the safety of the walking and bicycling much better than the national averages?
- What can be done to improve the various modes?

Recommendations

1:
School transportation planners and policy makers at all levels should analyze transportation risks comprehensively in their decision making related to school travel.

Recommendations

2:
Using a systematic risk-management framework, school districts should identify risk factors most salient for modes used by children in their community and identify approaches to manage and reduce those risks, including shifts to safer modes and safety improvements within each mode.

Recommendations

3:
USDOT should disseminate information on the relative risks of various modes of travel for school and school-related activities and on possible ways to mitigate the risks.
USDOT should also use this information to assess what role, if any, federal policy makers should have in efforts to improve the transportation safety of school children and the cost-effectiveness of specific safety measures.

Recommendations

4:
The compatibility and completeness of existing databases should be improved to allow better risk estimates.
To the extent possible, critical data elements (e.g., vehicle classifications, roadway classifications) should be included and defined consistently in all the datasets.

Recommendations

5:

USDOT and appropriate agencies, in consultation with outside experts, should analyze the advisability and costeffectiveness of establishing and maintaining any new school transportationrelated database.

Thank You!

Data Collection Opportunities

- Need for consistent data on ridership
- Random, unbiased collection schemes
- Sample from all trips
- Include both to and from school
- Select dates across the entire school year
- After-school activity trips
- If possible, collection should not be related to payments to school districts

Exposure (Trips and Student-Miles)

100 Million	100 Million
Student Trips	Student-Miles

Mode	(\%)	(\%)
School Bus	$58(25)$	$313(28)$
Other Bus	$5(2)$	$38(3)$
Passenger Vehicle, Adult Driver	$105(45)$	$580(51)$
Passenger Vehicle, Teen Driver	$34(14)$	$184(16)$
Bicycle	$5(2)$	$4(<1)$
Walking	$28(12)$	$15(1)$
Total	$\mathbf{2 3 5 (1 0 0)}$	$\mathbf{1 , 1 3 4 (1 0 0)}$

Points

- Adult drivers are responsible for most trips and miles
- School buses are second in both categories
- Miles/trip varies across modes

Injuries and Fatalities

Mode
School Bus
Other Bus
Passenger Vehicle, Adult Driver
Passenger Vehicle, Teen Driver
Bicycle
Walking
Total

Injuries (\%)	Fatalities (\%)
$\mathbf{6 , 0 0 0}(4)$	$20^{*}(2)$
$550(<1)$	$1(<1)$
$51,000(33)$	$169(20)$
$78,200(51)$	$448(54)$
$7,700(5)$	$46(6)$
$8,800(6)$	$131(16)$
$\mathbf{1 5 2 , 2 5 0}(\mathbf{1 0 0})$	$\mathbf{8 3 0}(\mathbf{9 9})$

Points

- Teen drivers are responsible for most injuries and fatalities
- School buses are ranked fifth in both categories
- *School bus mode includes related pedestrians incidents (Fatalities: 10 caused by bus, 5 caused by cars passing buses) (Injuries: 300 caused by bus or cars passing bus)

Number of Students by Travel Mode

 (1-Mile Minimum Pick-up)Miles from
School

Walking Bicycling
School
Bus

Driver 19 or +

Driver
18 or -

Less than 1
Between 1-1.5
Between 1.5-2
Between 2-3
Between 3-4
Between 4-5
Between 5-6
Between 6-7
Between 7-8
Between 8-9
Between 9-10
Total Students
\% of Students

28.5	14.3	-	4.8	-
7.1	4.8	8.3	3.6	-
1.4	1.4	9.2	6.6	0.2
0.9	2.8	18.4	15.0	0.4
-	-	17.6	14.6	0.3
-	-	16.2	11.0	0.3
-	-	13.3	9.0	0.2
-	-	10.3	7.0	0.2
-	-	7.4	5.0	0.1
-	-	4.4	3.0	0.1
-	-	1.5	1.0	0.0
38	23	107	81	2
15%	9%	43%	32%	1%

Miles per Year by Travel Mode

 (1-Mile Minimum Pick-up)| Miles from School | Walking | Bicycling | School Bus | Driver
 19 or + | Driver 18 or - |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Less than 1 | 6,413 | 3,463 | - | 1,283 | - |
| Between 1-1.5 | 4,008 | 2,886 | 6,546 | 2,405 | - |
| Between 1.5-2 | 1,107 | 1,196 | 10,129 | 6,202 | 177 |
| Between 2-3 | 1,055 | 3,417 | 28,941 | 20,250 | 506 |
| Between 3-4 | - | - | 38,698 | 27,641 | 614 |
| Between 4-5 | - | - | 45,998 | 26,730 | 668 |
| Between 5-6 | - | - | 45,998 | 26,730 | 668 |
| Between 6-7 | - | - | 42,281 | 24,570 | 614 |
| Between 7-8 | - | - | 34,847 | 20,250 | 506 |
| Between 8-9 | - | - | 23,696 | 13,770 | 344 |
| Between 9-10 | - | - | 8,828 | 5,130 | 128 |
| Total miles/yr | 12,582 | 10,962 | 285,961 | 174,960 | 4,227 |
| \% miles | 3\% | 2\% | 59\% | 36\% | 1\% |

Risk Measures (1-Mile Minimum Pick-up)

\left.| 5-10 year OIds | Rates/100 million miles | |
| :--- | ---: | ---: |
| School Bus | Fatalities | Injuries |
| Other Bus | 0.10 | 13 |
| PV (driver 19 and older) | 0.01 | 12 |
| Walking | 0.27 | 77 |
| Bicycling | 13.61 | 726 |
| PV (driver 18 and younger) | 21.16 | 2,625 |$\right\}$ National averages

Injuries/yr \% of Injuries Fatalitieslyr \% of Fatalities	Walking	Bicycling	School Bus	Driver 19 or +	Driver 18 or -
	0.09	0.29	0.04	0.13	0.11
	14\%	44\%	6\%	20\%	16\%
	0.0017	0.0023	0.0003	0.0005	0.0006
	32\%	43\%	5\%	9\%	12\%
	0.659	Total injuries per year Total fatalities per year			
	0.0054				

